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AN IMPROVED CONVERGENCE ANALYSIS OF THE SMOOTHED
AGGREGATION ALGEBRAIC MULTIGRID

MARIAN BREZINA, PETR VANĚK, AND PANAYOT S. VASSILEVSKI

Abstract. We present an improved analysis of the smoothed aggregation (SA) alge-
braic multigrid method (AMG) extending the original proof in [SA] and its modification
in [Va08]. The new result imposes fewer restrictions on the aggregates that makes it eas-
ier to verify in practice. Also, we extend a result in [Van] that allows us to use aggressive
coarsening at all levels due to the special properties of the polynomial smoother, that
we use and analyze, and thus provide a multilevel convergence estimate with bounds
independent of the coarsening ratio.

1. Introduction

The smoothed aggregation (or SA) algebraic multigrid (or AMG) has become one of
the methods of choice for solving large sparse linear systems for equations that typically
arise from discretizing elliptic partial differential equations. This paper focuses on the
multilevel analysis of the method by improving the original result presented in [SA] and
its modification in [Va08]. The convergence result that we prove in the present paper
imposes only one restriction on the aggregates formed at every level; namely, to have
a diameter bounded above by a specific number that depends only on the polynomial
degree used in the construction of the prolongation matrix. For general aggregation
strategies, the bound also generally depends on the shape of the resulting aggregates
(which is hidden in the constant of the Poincaré inequality that we assume for our model
setting). For the specific general aggregation strategy that we outline in a later section,
that constant can be shown to be uniformly bounded. The final result is qualitatively
similar to the original one, i.e., the relative condition number of the V-cycle SA AMG
operator with respect to the original matrix is of order ℓ3 where ℓ is the number of levels
involved in the cycle.

An additional contribution of the paper is that the presented analysis allows for ag-
gressive coarsening, and the proved convergence bound is independent of the coarsening
ratio, provided that a special polynomial smoother is employed as multigrid relaxation.
The smoother we use is a symmetrization of the one used previously in [VBT, Van]. We
present a new analysis of this smoother that makes it possible to incorporate aggressive
coarsening at all levels.

We note that multilevel methods featuring aggressive coarsening typically suffer dete-
rioration of convergence unless a more powerful smoothing is employed. A very common
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choice in such cases is to resort to using overlapping Schwarz smoothers. The polynomial
smoother employed here offers an alternative that is expected to be cheaper than the use
of overlapping Schwarz smoothers. This is the case, since we show that the polynomial
degree ν needed to compensate for large coarsening factor H/h, where h ≪ H, are the
mesh sizes of two consecutive levels, is sufficient to satisfy ν = O(H/h). This was first
recognized, for a two–level method in [KrVa] and [VBT] and used in a V/W -cycle (for
aggressive coarsening between the first and second level only) in [Van]. For problems
posed on a d–dimensional domain of unit size, to implement one action of such poly-
nomial smoother, we need order H

h
N operations, where N = O(h−d) is the number of

unknowns at the given fine level. The storage requirement is O(N) which is optimal (it is
already accounted for since we keep the matrices anyway). The cost of a typical Schwarz
smoother is readily estimated to be of order H−d (number of subdomains) times the cost
to factorize, store and solve with the individual blocks. For the best direct factorization
method such as nested dissection, we have the following well-known (cf., e.g., [TD06])
cost estimates for a finite element matrix on a m × m (×m) mesh in 2D (3D):

• “cost of factorization:”

O
(
(md)

3

2

)
, d = 2,

O
(
(md)2

)
, d = 3.

• “storage requirement:”

O
(
md log m

)
, d = 2,

O
(
(md)

4

3

)
, d = 3.

• “cost for triangular factors solve:” (same as the number of nonzeros of the trian-
gular factors)

O
(
md log m

)
, d = 2,

O
(
(md)

4

3

)
, d = 3.

A straightforward calculation shows that the Schwarz method requires more than O(N)
setup cost to compute the triangular factors of the Schwarz blocks. More specifically, in

3D we have, with m = H/h, O(H−d) (the number of Schwarz blocks) times
(
(H/h)d

)2

(the cost of nested dissection to factor one block) which gives a total of O(ν3N) operations
(in 3D). In 2D, we have O(νN) factorization cost. Also, the storage requirement in both,
2D and 3D, is suboptimal. More specifically, to store the non-zero entries of the (lower)
triangular factors of the Schwarz blocks it requires O(H−d) times O

(
(H/h)d log H/h

)

which gives O (N log ν) storage in 2D, and O(H−d) times O
((

(H/h)d
) 4

3

)
, that is, O(νN)

storage in 3D. Likewise, to solve linear systems with the triangular factors, we need
O(N log ν) in 2D, which is better than O(νN) needed for the polynomial smoother,

whereas in 3D it is O(Nν) = O
(
H−d

(
(H/h)d

) 4

3

)
(d = 3), which is of the same order

as the cost of the polynomial smoother. Another point to stress here is that generalizing
the existing (geometry based) analysis of Schwarz smoothers is difficult to carry out in
a multilevel setting for algebraic multigrid coarse spaces due to their complex geometric
properties.
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Finally, to fill–in the gap of the previous convergence results, namely, to have the com-
plexity of one V-cycle under control, we suggest one (geometrically based) aggregation
procedure, that after the first level of coarsening generates matrix graphs with regular
structure (similar to a finite element matrices on uniformly refined meshes) which then
gives us a straightforward tool to estimate the cost of the V-cycle and the setup cost of
generating the AMG hierarchy (prolongation and coarse-level matrices).

The remainder of the paper is structured as follows. In Section 2, we formulate the SA
method by introducing the relevant notation and tools. Section 3 reviews some properties
of an optimal polynomial that are constructed on the basis of the standard Chebyshev
polynomial, and formulate some technical results needed in the main analysis.

Section 4 contains the main assumptions for our analysis, namely a standard weak
approximation property formulated in a matrix-vector form. The analysis itself is found
in Section 5. Section 6, contains the definition and analysis of the polynomial smoother
that ensures convergence result independent of the coarsening ratio in cases of very ag-
gressive coarsening. We complete the paper with Section 7 that contains one geometric
strategy for generating aggregates that would produce coarse matrix graphs with regu-
lar structure and illustrate it with some numerical tests combined with the polynomial
smoother introduced in Section 6. Finally, as an Appendix, we provide some technical
estimates used in the analysis.

2. Preliminaries

To be specific, in the present paper we consider sparse n×n symmetric positive definite
(or s.p.d.) matrices A that come from a finite element discretization of the model second
order elliptic partial differential equation (or PDE)

(2.1) −∇ · a(x)∇u = f,

posed on a domain Ω, a polygon (in 2D) or polytope (in 3D), with Dirichlet or combi-
nation of Neumann and Dirichlet boundary conditions. The given coefficient a = a(x)
satisfies

0 < a1 ≤ a(x) ≤ a2 on Ω,

and the given right hand side, f , is in L2(Ω).
The domain is triangulated by a mesh, or set of elements, Th and with Nh we denote the

respective set of (nodes) vertices of elements in Th. In the simplest case of piecewise linear
polynomial functions used to define the respective finite element space Vh, the degrees
of freedom is the set Nh. Discretizing the above PDE using the Galerkin method with
this finite element space and its usual Lagrangian (nodal) basis, we obtain the system of
linear algebraic equations,

(2.2) Au = f ,

the solution of which is our main interest. The n × n matrix A is symmetric positive
definite (s.p.d.) and sparse, i.e., having overall O(n) nonzero entries (or more precisely
O(1) nonzero entries per row). Its sparsity naturally defines a graph, which in our simple
case of lowest order elements coincides with the mesh Th. More specifically, for any
nonzero entry aij of A, we have an edge of the matrix graph that connects its vertices i
and j. Nonzero entries are possible only if two nodes xi and xj in Nh are vertices of a
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common element τ ∈ Th. (To be precise, we consider as nonzero entries some possibly
numerical zero entries.)

We will use ℓ2-vector norm, i.e., ‖v‖ =
√

vTv and for a given s.p.d. matrix X, the

norm ‖v‖X =
√

vT Xv.
Our interest is in analyzing the smoothed aggregation (SA) algebraic multigrid as a

nearly optimal (in convergence properties) method for solving problem (2.2).
Given the finest-level matrix, A, the SA method bases its coarsening on a non-overlapping

partition of the set of fine-level nodes, N0 = Nh, into sets, called aggregates, {Ai}nc
i=1.

At this point, we do not specify any particular algorithm for generating aggregates. As
with other algebraic multigrid methods, SA must ensure that error components not suffi-
ciently attenuated by relaxation (referred to as “algebraically smooth” components) must
be removed by the coarse-grid correction. For the simple model problem and the relax-
ation schemes considered here, such algebraically smooth error components are locally
constant (discretizations of Poisson operator have stencils with zero row sum in the inte-
rior of the domain). Thus, in this simplest case, SA uses the constant function 1, or its
coefficient vector 1, which restricted to each aggregate defines a block–diagonal matrix
Ic = diag (ci1i); 1i = 1|Ai

and ci = 1
‖1i‖ . Ic is referred to as a tentative prolongator.

In the case considered here, it amounts to a piecewise constant interpolation, which,
when used as a multigrid transfer operator, as is well-known, leads to highly non-scalable
convergence of the resulting multigrid V -cycle. That is why the tentative prolongator
is not used by SA directly. Instead, the actual prolongator (or interpolation matrix)
P is obtained as a product of a certain matrix polynomial with smoothing properties,
times Ic. The coarse level matrix, Ac, is defined variationally via the Galerkin relation
Ac = P T AP . We also define the coarse vector 1c = ( 1

ci
) ∈ R

nc . We have, by construction,

that Ic has orthogonal columns of unit size, i.e., IT
c Ic = I and that 1 = Ic1c. We identify

the coarse degrees of freedom (row and column indices of Ac) with the indices of the set
of aggregates {Ai}nc

i=1. They also define the vertices Nc of the matrix graph associated
with Ac.

We let A0 = A, 10 = 1, n0 = n, N0 = Nh, and similarly, A1 = Ac, 11 = 1c, n1 = nc,
N1 = Nc, I0

1 = Ic, and A0
i = Ai for i = 1, . . . , nc.

The coarsening proceeds by recursively creating aggregates at every consecutive level,
k ≥ 1, of the multigrid hierarchy (larger k stands for coarser level). For this to be possible,
we only need to have available, at the current level, the set of aggregates {Ak−1

i }nk
i=1

(generated at the preceding level) or equivalently the set of nodes Nk (defined as the
indices of the preceding level aggregates Ak−1

i ), the matrix Ak, and the vector 1k. At the
current level k, we form a new set of aggregates {Ak

i }
nk+1

i=1 by grouping together nodes
Nk of level k. The current-level aggregates are sets of connected nodes that provide a
non–overlapping partition of Nk. The connectivity is defined via the graph (sparsity
pattern) of the matrix Ak.

The current level vector 1k is restricted to each aggregate Ak
i denoted by 1k, i and the

tentative prolongator Ik
k+1 is defined as the block diagonal matrix diag

(
ci 1k,i|Ak

i

)nk+1

i=1
.

The constant ci = 1
‖1k,i‖ is a scaling factor used to make the columns of Ik

k+1 on unit size,

and serves to define the next (k + 1)-level vector as 1k+1 = ( 1
ci

) ∈ R
nk+1 .
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Next, we define the actual prolongator (or interpolation matrix) P k
k+1 as a product of

a matrix polynomial times Ik
k+1. That is,

(2.3) P k
k+1 = SkI

k
k+1,

where

(2.4) Sk = ϕν(Ak),

for a polynomial ϕν(t) of given degree ν ≥ 1 that is normalized at the origin, i.e.,
ϕν(0) = 1. Our analysis, exploits certain optimal, Chebyshev–based, polynomial, to be
introduced in Section 3.

The coarse-level matrix is defined by the variational (Galerkin) formula,

(2.5) Ak+1 = (P k
k+1)

T AkP
k
k+1.

With Ak+1, the set of aggregates {Ak}nk+1

i=1 constructed and hence the set of coarse
nodes, Nk+1, identified, and also the vector 1k+1 defined, the recursion can proceed in
the same manner on the next coarse level.

The above procedure can be illustrated more explicitly, as follows. At level k we
construct

Ik
k+1 =




c11k,1 0 0 . . . 0
0 c21k,2 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 cnk+1−11k,nk+1−1 0
0 0 . . . 0 cnk+1

1k,nk+1




} Ak
1

} Ak
2

} ...
} Ak

nk+1−1

} Ak
nk+1

,

1k,i = 1k|Ak+1

i
, ci =

(
1T

k,i1k,i

)−1/2
, i = 1, . . . , nk+1, and 1k+1 =




c−1
1

c−1
2

.

.

.
c−1
nk+1




.

The construction ensures that 1k = Ik
k+11k+1 and (Ik

k+1)
T Ik

k+1 = I.
Next, we introduce the composite tentative prolongator

(2.6) Ik = I0
1 . . . Ik−1

k for k ≥ 1, I0 = I.

It is clear that 1 = 10 = Ik1k for every k ≥ 0. By construction, we also have IT
k Ik = I

and hence IkI
T
k : R

n 7→ R
n is an ℓ2–orthogonal projection. Introducing the restriction

matrix Qk = IT
k : R

n 7→ R
nk , then IkQk is the ℓ2–projection of our further interest.

Similarly, we can introduce the composite aggregates Ãk
i . They are defined as the

following sets of the finest-level degrees of freedom (nodes)

Ãk
i = support

(
IkχAk

i

)
,

where χT stands for the characteristic function of the set T viewed as a vector of zeros

and ones. In other words, the composite aggregate Ãk
i is the support of the vectors in

the range of the composite tentative prolongator with domain restricted to the space of
vectors supported in the aggregate Ak

i .
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Alternatively, we may define the composite aggregates in the following recursive way:

Ãk
i = ∪{Ãk−1

j : j ∈ Ak
i }.

To define a standard V-cycle multigrid, in addition to the hierarchy of matrices {Ak}
and prolongators {P k

k+1}, we need the smoothing matrices Mk. We assume that Mk

provide iterative methods with error propagation operator I − M−1
k Ak, such that MT

k +
Mk − Ak is coercive in terms of Ak and also we assume the scaling, uniformly in k ≥ 0,
for a constant α > 0,

(2.7) α vT
k Ak

(
MT

k + Mk − Ak

)−1
Akvk ≤ vT

k Akvk for all vk ∈ R
nk .

Furthermore, we assume that Mk satisfies one of the bounds, either Mk is spectrally
equivalent to Richardson, i.e., Mk = bkI for an explicitly available norm bound bk ≥ ‖Ak‖
(then (2.7) trivially holds ), or in addition to (2.7),

(2.8) vT
k Mkvk ≤ β

(
bk+1‖vk‖2 + vT

k Akvk

)
,

where bk+1 is an upper bound of ‖Ak+1‖ that will be specified later and β is a positive
constant.

Here and throughout the paper

(2.9) Mk = Mk

(
MT

k + Mk − Ak

)−1
MT

k ,

stands for the symmetrized smoother. It can be defined implicitly from the relation

I − M
−1

k Ak = (I − M−T
k Ak)(I − M−1

k Ak).

The estimates (2.7) and (2.8) are verified for the polynomial smoother that we use to
handle the case of large coarsening factor.

Based on a given choice of P k
k+1, Mk (that is Ak-convergent), for 0 ≤ k ≤ ℓ − 1,

and Ak obtained variationally from Ak−1 for 1 ≤ k ≤ ℓ, starting with Bℓ = Aℓ, for
k = ℓ− 1, . . . , 1, 0, we recursively define a V –cycle preconditioner (a s.p.d. matrix) Bk

in the following standard way:

I − B−1
k Ak = (I − M−T

k Ak)
(
I − P k

k+1B
−1
k+1(P

k
k+1)

T Ak

)
(I − M−1

k Ak).

Letting B = B0, we are concerned in what follows with the (upper) bound K∗ in the
estimate

(2.10) vT Av ≤ vT Bv ≤ K⋆ vT Av.

3. An optimal Chebyshev-like polynomial

Here, we review a polynomial with certain optimal properties (see, [BD96], [Va08],
see also [BHMV] and [Sha94]). Its construction is based on the classical Chebyshev
polynomials.

Consider the Chebyshev polynomials Tk(t) defined by recursion as follows, T0 = 1,
T1(t) = t and for k ≥ 1, Tk+1(t) = 2tTk(t)− Tk−1(t). Letting t = cos α ∈ [−1, 1], we have
the explicit representation Tk(t) = cos kα, which is seen from the trigonometric identity
cos(k + 1)α + cos(k − 1)α = 2 cos α cos kα.

We now summarize some properties of Tk (the proofs are straightforward and can be
found in [Va08]).
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Proposition 3.1. For a given b > 0, the function defined for t ∈ [0, b]

(3.1) ϕν(t) = (−1)ν 1

2ν + 1

√
b√
t

T2ν+1

(√
t√
b

)
,

is a polynomial of degree ν such that ϕν(0) = 1, that is, ϕν(t) = 1 − tqν−1(t) for some
polynomial qν−1(t) of degree ν − 1.

Proposition 3.2. The polynomial ϕν defined in (3.1) has the following optimality prop-
erty:

(3.2) min
pν : pν(0)=1

max
t∈[0, b]

|
√

t pν(t)| = max
t∈[0, b]

|
√

t ϕν(t)| =

√
b

2ν + 1
.

Also, ϕν(0) = 1 and

(3.3) max
t∈[0, b]

|ϕν(t)| = 1.

Here are some particular cases of the polynomials ϕν .

Using the definition of the Chebyshev polynomials, T0 = 1, T1 = t, Tk+1 = 2tTk − Tk−1,
for k ≥ 1, we get T2 = 2t2 − 1 and hence

T3(t) = 4t3 − 3t.

Thus,

ϕ1(t) = −1

3

√
b(4

t

b
3

2

− 3√
b
) = 1 − 4

3

t

b
.

This in particular shows that

sup
t∈(0, b]

|1 − ϕ1(t)|√
t

=
4

3

1√
b
.

The next polynomial is based on T5 = 2tT4 − T3 = 2t(2tT3 − T2) − T3 = (4t2 − 1)(4t3 −
3t) − 4t3 + 2t = 16t5 − 20t3 + 5t. Therefore,

ϕ2(t) =
1

5

√
b

t

(
16
√

tt2
1

b
5

2

− 20
√

tt
1

b
3

2

+ 5
√

t
1√
b

)
.

This shows,

ϕ2(t) =
16

5

t2

b2
− 4

t

b
+ 1.

We also have,

sup
t∈(0, b]

1 − ϕ2(t)√
t

=
4√
b

sup
x∈(0,1]

(x − 4

5
x3) =

4

3

√
5

3

1√
b
.

In general, it is clear that the following result holds.

Proposition 3.3. There is a constant Cν independent of b such that the following esti-
mate holds,

(3.4) sup
t∈(0, b]

|1 − ϕν(t)|√
t

≤ Cν
1

b
1

2

.
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Proof. We have, 1−ϕν(t) = tqν−1(t), that is, 1−ϕν√
t

=
√

t qν−1(t) and therefore the quotient

in question is bounded for t ∈ (0, b]. More specifically, the following dependence on b is
seen:

sup
t∈(0, b]

|1 − ϕν(t)|√
t

=
1

b
1

2

sup
λ∈(0, 1]

∣∣∣1 − (−1)ν

2ν+1
T2ν+1(

√
λ)√

λ

∣∣∣
√

λ
.

Clearly, the constant

(3.5) Cν = sup
λ∈(0, 1]

∣∣∣1 − (−1)ν

2ν+1
T2ν+1(

√
λ)√

λ

∣∣∣
√

λ
,

is independent of b.
�

The following two results are proven in the Appendix.

Proposition 3.4. The constant Cν, (3.5), defined in Proposition 3.3, satisfies the bound

Cν

2ν + 1
≤ 2.

Proposition 3.5. Define the polynomial

(3.6) sν(t) = (−1)ν 1

2ν + 1

T2ν+1(
√

t)√
t

.

Then, the following estimate holds for t ∈ [0, 1]
(
1 − (2ν + 1)2s2

ν(t)t
)
sν(t) =

(
1 − T 2

2ν+1(
√

t)
)

sν(t) ≥ −1 + δ0,

with δ0 = 1 − 2
3
√

3
∈ (0, 1).

4. Main assumptions

The main assumption in our analysis is that a “weak approximation property” is satis-
fied by certain coarse spaces. For the scalar problems, (2.1), considered here, the relevant
coarse spaces consist of piecewise constant vectors. Namely, it is well-known that a finite
element function, v, can be approximated by a piecewise constant function IHv in L2.

The latter is defined based on sets Ãi (subdomains of Ω formed as the union of fine–grid
elements that cover our composite aggregates, which we later do not distinguish) with

diameter O(H). Over each set Ãi, IHv is constant, for example equal to the average

value of v over an extended domain Ωi of Ãi with comparable diameter O(H) (for details
see [SA]). Then, for A as in (2.2), i.e., obtained by a finite element discretization of the
model problem (2.1), the following is a standard estimate in L2 in terms of the energy
norm ‖.‖a ≃ | . |H1(Ω), corresponding to continuous problem (2.1),(see [SA])

(4.1) ‖v − IHv‖0 ≤ ca H ‖v‖a,

where

(4.2) H = max
i

diam (Ãi).
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Rewriting this in terms of vectors leads to the following estimate (with a different constant
ca)

h
d
2 ‖v − IHv‖ ≤ caH ‖v‖A,

where d = 2 or d = 3 is the dimension of the domain Ω where the (Laplacian–like)
PDE of interest (2.1) is posed. Since the finite element discretization for such problems
satisfies, ‖A‖ ≃ hd−2, we arrive at

‖v − IHv‖ ≤ ca
H

h

1

‖A‖ 1

2

‖v‖A.

In the analysis of SA to follow, we will have H
h
≃ (2ν +1)k+1, where ν ≥ 1 is the degree of

the polynomial used to define the prolongator in (2.3)-(2.4). Also, here H = Hk defined
in (4.2), is the characteristic diameter of the composite aggregates at coarsening level k.

We summarize this weak approximation estimate as our main assumption. Let Qk :
R

n0 7→ R
nk , k = 0, . . . , ℓ be the restriction mappings such that IkQk are ℓ2-projections

onto Range(Ik). The following approximation property is our main assumption:

(4.3) ‖v − Ik+1Qk+1v‖ ≤ σa
(2ν + 1)k+1

b
1

2

0

‖v‖A,

where b = b0 is an available upper bound of ‖A‖. The weak approximation property

(4.3) is satisfied under the assumption that the diameter of composite aggregates, Ãk
i ,

satisfies the estimate

(4.4) max
i∈Nk

diam(Ãk
i ) ≤ CA (2ν + 1)k+1h.

A typical choice in practice is ν = 1, but values ν > 1 may be useful when a very
aggressive coarsening is performed.

We conclude this section with several remarks.

Remark 4.1. We comment that the constant σa (or the constant ca in the Poincaré
inequality (4.1)) generally depends on the shape of aggregates. A simple way to overcome
that dependence, is to prove local estimates, composite aggregate–by-composite aggregate,
by embedding each of them into a regularly shaped domain Ωi (such as ball or box). Then,
however, the overall constant σa, will depend on the maximum number of overlaps of the
subdomains Ωi. (For details, see [SA].) For the specific general aggregation procedure that
we describe in Section 7, it is easily seen that σa can be kept under control, uniformly,
with respect to the number of coarsening levels used.

Remark 4.2. As with any algebraic multigrid method, to achieve a method with good
overall storage and computational cost, it is important that the operators of the con-
structed multigrid hierarchy be sparse. For SA methods, this amounts to balancing the
construction of the aggregates and the selection of the prolongation smoothing. In the last
section, we comment on one way to define aggregates that guarantees uniform sparsity
pattern of the coarse level matrices, which makes it easier to control the complexity of the
overall method.
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Remark 4.3. Our proof below allows for polynomial degree ν that can depend on the
level index, i.e., ν = νk, that may be employed to optimize the complexity of the resulting
SA method.

5. Analysis details

We recall the definition (2.9) of the symmetrized smoother Mk coming from any Ak–
convergent smoother Mk. We begin with the minimal assumption on smoother Mk (2.7)
that implies that Mk provides an Ak–convergent iteration. As already mentioned, if Mk

is spectrally equivalent to the Richardson one, ‖Ak‖ I and properly scaled as

(5.1) vT Akv ≤ ‖Ak‖vTv ≤ vT Mkv,

then (2.7) is trivially satisfied. For example, we can let Mk = bk I where bk is any
available upper bound of ‖Ak‖ (see (5.2)).

We note that for the SA method with aggressive coarsening, i.e., when we consider
values ν > 1, we later utilize a more specialized smoother that satisfies, in addition to
(2.7), also an estimate of the form (2.8).

Preliminary estimates. We begin with a lemma that is a modification of a similar
result in [SA].

Lemma 5.1. Let b0 ≥ ‖A‖ be an explicitly available upper bound of ‖A‖. We set

(5.2) bk =
b0

(2ν + 1)2k
, k = 0, . . . , ℓ.

Further, let Sk = ϕν(Ak) = sν

(
1
bk

Ak

)
(see (3.6)) with b = bk for all k = 0, . . . , ℓ − 1.

Then for every k = 0, . . . , ℓ it holds that

‖Ak+1‖ ≤ ‖AkS
2
k‖ ≤ bk+1.

Proof. Assume ‖Ak‖ ≤ bk for some k < ℓ. Recall that (Ik
k+1)

T Ik
k+1 = I. Then, since

P k
k+1 = SkI

k
k+1, we have

‖Ak+1‖ = sup
v∈R

nk+1

vT Ak+1v

vTv
= sup

v∈R
nk+1

vT (Ik
k+1)

T
k ST

k AkSkI
k
k+1v

(Ik
k+1v)T (Ik

k+1v)
≤ sup

v∈R
nk

vT ST
k AkSkv

vTv
.

Further, using the fact that Sk = ϕν(Ak) with b = bk and the property (3.2) of ϕν , we
get,

vT ST
k AkSkv = vT ϕ2

ν(A)Av ≤ sup
t∈σ(Ak)

ϕν(t)
2t‖v‖2

≤ sup
t∈[0,bk]

ϕν(t)
2t ‖v‖2 ≤ bk

(2ν+1)2
‖v‖2.

That is,

‖Ak+1‖ ≤ bk

(2ν + 1)2
= bk+1,

and the proof is complete by induction. �
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Remark 5.1. We point out that, we have the freedom to perturb the upper bounds bk by

a factor 1 + δk thus leading to the recurrence of the perturbed upper bounds b̃k,

b̃k+1 = b̃k(1 + δk+1) = bk

∏

j≤k+1

(1 + δj).

The analysis to follow remains valid with bk replaced by b̃k as long as the product
∏

j≤ℓ(1+

δj) stays uniformly bounded. The latter holds, for example, if δj ≤ C0j
−2. The fact that

we can perturb bk allows us to assume that the matrix sν(b
−1
k Ak) is invertible. Note that

sν(t) admits the factorization

sν(t) =
∏

j

(1 − τ−1
j t), τj = sin2

„

j

2ν + 1
Π

«

, j = 1, . . . , ν.

Then, if the eigenvalues λs of Ak are such that b−1
k λs 6= τj for all j, then each factor

I − τ−1
j b−1

k Ak is an invertible matrix and hence so is sν(b
−1
k Ak). Otherwise with the

perturbation 1 + δk, we can ensure (in theory) that this does not happen. For example, if
λs is such that 0 < τ0 ≡ min{1

2
b−1
k λmin, τ1} ≤ τjs−1 < b−1

k λs ≤ τjs, with the perturbation

1 + δk, we can ensure τjs−1 < 1
1+δk

b−1
k λs < τjs if

δk < min
s

b−1
k λs − τjs−1

τjs−1

.

Having ensured that Sk = sν(b
−1
k Ak) is invertible, implies that the smoothed prolongator

P k
k+1 = SkI

k
k+1 has the same column rank as Ik

k+1 and since Ik
k+1 has full column rank

(it is actually orthogonal matrix), then so has P k
k+1. In conclusion, starting with s.p.d.

matrix A0 = A all coarse-level matrices Ak will stay positive definite. This is what we
assume in the analysis to follow to avoid some technical details.

Next, we formulate the XZ-identity ([XZ]) in its matrix-vector form suitable for our
analysis.

Given multigrid smoothers defined by Mk such that MT
k +Mk−Ak is coercive in terms

of Ak, giving rise to the symmetrized smoother Mk (see (2.9)), interpolation matrices
P k

k+1, and the coarse matrices defined as Ak+1 = (P k
k+1)

T AkP
k
k+1, the following main

XZ-identity holds (cf., [Va08]):

(5.3)
vT Av ≤ vT Bv = inf

(vk)

[
vT

ℓ Aℓvℓ +
∑
k<ℓ

(
vf

k + M−T
k AkP

k
k+1vk+1

)T

Mk

(
vf

k + M−T
k AkP

k
k+1vk+1

)]
.

The inf here is taken over the components (vk) of all possible decompositions of v ob-
tained as follows:

(i) Starting with v0 = v,

(ii) for k ≥ 0, we let vk = vf
k + P k

k+1vk+1, i.e., first choosing vk+1 ∈ R
nk+1 arbitrary,

we then let vf
k = vk − P k

k+1vk+1.

We recall here that Qk : R
n0 → R

nk are linear mappings such that IkQk are ℓ2 projec-
tions onto Range(Ik), that is,

Qk = ((Ik)
T Ik)

−1(Ik)
T = (Ik)

T .
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We consider the following particular decomposition

vf
k = (Qk − P k

k+1Qk+1)v, vk+1 = Qk+1v,

and observe that applying Cauchy–Schwarz inequality (in the Mk–inner product) to the
sum in (5.3) results in the estimate

(5.4)

∑
k<l

(vf
k + M−T

k AkP
k
k+1vk+1)

T Mk(v
f
k + M−T

k AkP
k
k+1vk+1)

≤ 2
∑
k<l

(vf
k)T Mkv

f
k + 2

∑
k<l

(P k
k+1vk+1)

T AkM
−1
k MkM

−T
k AkP

k
k+1vk+1)

≤ 2
∑
k<l

(vf
k)T Mkv

f
k + 2

α

∑
k<l

(P k
k+1vk+1)

T AkP
k
k+1vk+1

= 2
∑
k<l

(vf
k)T Mkv

f
k + 2

α

∑
k<l

(P k
k+1vk+1)

T AkP
k
k+1vk+1

= 2
∑
k<l

(vf
k)T Mkv

f
k + 2

α

∑
k<l

(vk+1)
T Ak+1vk+1.

From here, we see that in order to bound the relative condition number of the V–cycle
preconditioner B with respect to A, (due to estimate (5.3)), based on our choice of the
smoother as in (2.7), it is sufficient to bound the expressions (i) and (ii) below:

(i)
∑
k<ℓ

(vf
k)T Mkv

f
k =

∑
k<ℓ

(
(Qk − P k

k+1Qk+1)v
)T

Mk

(
(Qk − P k

k+1Qk+1)v
)

and
(ii)

∑
k≤ℓ

vT
k Akvk =

∑
k≤ℓ

vT QT
k AkQkv,

both in terms of vT Av.

Estimating the first sum (i). Recall that P k
k+1 = SkI

k
k+1, Sk = ϕν(Ak) with b = bk ≥

‖Ak‖ given by (5.2), Ik = I0
1I

1
2 . . . Ik−1

k and (Ik−1
k )T Ik−1

k = I. Note that (see (3.3))
‖Sk‖ ≤ sup

t∈[0, bk]

|ϕν(t)| = 1. We start with the inequality,

‖
(
Qk − P k

k+1Qk+1

)
v‖ = ‖

(
Qk − SkI

k
k+1Qk+1

)
v‖

= ‖Sk

(
Qk − Ik

k+1Qk+1

)
v + (I − Sk)Qkv‖

≤ ‖Sk

(
Qk − Ik

k+1Qk+1

)
v‖ + ‖(I − Sk)Qkv‖

≤ ‖Sk‖‖
(
Qk − Ik

k+1Qk+1

)
v‖ + ‖(I − Sk)Qkv‖

≤ ‖Ik

(
Qk − Ik

k+1Qk+1

)
v‖ + ‖(I − Sk)Qkv‖.

Notice that

I − Sk = I − ϕν(Ak) = A
− 1

2

k (I − ϕν(Ak)) A
1

2

k .

Based on estimate (3.4), we then get

(5.5)

‖(I − Sk)Qkv‖ = ‖A− 1

2

k (I − ϕν(Ak)) A
1

2

k Qkv‖
≤ ‖A− 1

2

k (I − ϕν(Ak)) ‖‖A
1

2

k Qkv‖
≤ max

t∈σ(Ak)

1−ϕν(t)√
t

‖Qkv‖Ak

≤ sup
t∈(0, bk]

1−ϕν(t)√
t

‖Qkv‖Ak

≤ Cν
1√
bk

‖Qkv‖Ak
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Thus, we arrived at the estimate

(5.6) ‖(Qk − P k
k+1Qk+1)v‖ ≤ ‖ (IkQk − Ik+1Qk+1)v‖ +

Cν

b
1/2
k

‖Qkv‖Ak
.

The final bound of sum (i) will be derived after we estimate sum (ii).

Estimating the second sum (ii). We bound next ‖Qkv‖Ak
. Since Sk = ϕν(Ak) with

b = bk, (3.3) gives ‖Sk‖Ak
≤ 1. Then, based on Lemma 5.1 and the property (3.2), we

obtain

(5.7)

‖Qk+1v‖Ak+1
= ‖P k

k+1Qk+1v‖Ak
= ‖SkI

k
k+1Qk+1v‖Ak

= ‖Sk(I
k
k+1Qk+1 − Qk)v + SkQkv‖Ak

≤ ‖Sk

(
Ik
k+1Qk+1 − Qk

)
v‖Ak

+ ‖SkQkv‖Ak

≤ ‖Sk

(
Ik
k+1Qk+1 − Qk

)
v‖Ak

+ ‖Sk‖Ak
‖Qkv‖Ak

≤ ‖A
1

2

k Sk(Qk − Ik
k+1Qk+1)v‖ + ‖Qkv‖Ak

≤ ‖A
1

2

k Sk‖‖(Qk − Ik
k+1Qk+1)v‖ + ‖Qkv‖Ak

= ‖A
1

2

k ϕν(Ak)‖‖(Qk − Ik
k+1Qk+1)v‖ + ‖Qkv‖Ak

≤ b
1/2

k

(2ν+1)
‖(Qk − Ik

k+1Qk+1)v‖ + ‖Qkv‖Ak

=
b
1
2
0

(2ν+1)k+1‖Ik(Qk − Ik
k+1Qk+1)v‖ + ‖Qkv‖Ak

=
b
1
2
0

(2ν+1)k+1‖(IkQk − Ik+1Qk+1)v‖ + ‖Qkv‖Ak

= b
1

2

k+1‖(IkQk − Ik+1Qk+1)v‖ + ‖Qkv‖Ak
.

Since IkQk is an ℓ2−orthogonal projection onto Range(Ik) and Ik+1Qk+1 is an ℓ2−orthogonal
projection onto Range(Ik+1) ⊂ Range(Ik), we have

(IkQk)
2 = IkQk and IkQkIk+1Qk+1 = Ik+1Qk+1,

therefore,

((I − IkQk)u)T (IkQk − Ik+1Qk+1)v = uT (I − IkQk)(IkQk − Ik+1Qk+1)v = 0 ∀u,v,

that is, spaces Range(I − IkQk) and Range(IkQk − Ik+1Qk+1) are ℓ2−orthogonal, and we
have the Pythagorean theorem

‖v − Ik+1Qk+1v‖2 = ‖ (IkQk − Ik+1Qk+1)v‖2 + ‖v − IkQkv‖2.

Therefore,

‖ (IkQk − Ik+1Qk+1)v‖ ≤ ‖v − Ik+1Qk+1v‖.
That is, if we bound ‖v − Ik+1Qk+1v‖, the result will follow.

Use now the main estimate (4.3) which was our main assumption. It reads,

‖v − IkQkv‖2 ≤ σ2
a

(2ν + 1)2k

b0

vT Av,

where b0 is an available upper bound of ‖A‖. Then,

(5.8) ‖ (IkQk − Ik+1Qk+1)v‖ ≤ ‖v−Ik+1Qk+1v‖ ≤ σa
(2ν + 1)k+1

b
1/2
0

‖v‖A = σab
−1/2
k+1 ‖v‖A.
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Substituting the latter estimate in (5.7) leads to the following recursive estimate,

‖Qk+1v‖Ak+1
≤ ‖Qkv‖Ak

+ σa‖v‖A.

That is, we proved the following main estimate

(5.9) ‖Qkv‖Ak
≤ (1 + σak) ‖v‖A ≤ (1 + σaℓ)‖v‖A.

Thus the second sum is bounded as follows

(5.10)
∑

l≤ℓ

vT
k Akvk =

∑

k≤ℓ

‖Qkv‖2
Ak

≤ (1 + σaℓ)
2ℓ vT Av.

Note that the above estimate is independent of ν, that is, the stability of Qk in en-
ergy (5.10) holds independently of the coarsening ratio (between two consecutive levels)
Hk+1/Hk = 2ν + 1 even when ν gets large.

Completing the bound of the first sum (i). The estimate (5.6), together with (5.8)
and (5.9), imply

(5.11)

‖
(
Qk − P k

k+1Qk+1

)
v‖ ≤ ‖ (IkQk − Ik+1Qk+1)v‖ + Cν

b
1/2

k

‖Qkv‖Ak

≤ σa
(2ν+1)k+1

b
1/2

0

‖v‖A + Cν

b
1/2

k

(1 + σak) ‖v‖A

≤ σa(2ν+1)+Cν(1+σak)

b
1/2

k

‖v‖A.

Thus, we proved a weak approximation property for the smoothed prolongators. Note
that the above bound depends on ν and grows linearly with increasing value of ν. This re-
flects the simple fact that the coarse-space, as it becomes smaller, loses its approximation
capability.

Next, we prove two bounds for sum (i) depending on the choice of smoother Mk.
First consider the simple choice of Mk ≃ bkI, i.e., spectrally equivalent to Richardson.

Recall that bk ≥ ‖Ak‖ is given by (5.2). To establish the bound of sum (i) in this case,
we use the estimate

(5.12)
‖M1/2

k

(
Qk − P k

k+1Qk+1

)
v‖ ≃ b

1/2
k ‖

(
Qk − P k

k+1Qk+1

)
v‖

≤ (σa(2ν + 1) + Cν(1 + σak)) ‖v‖A

≤ (2ν + 1) (σa + 2(1 + σak)) ‖v‖A

In the last inequality, we used Proposition 3.4. This bound grows with ν 7→ ∞. Thus,
simple smoothers spectrally equivalent to Richardson are appropriate only for bounded
coarsening ratio (or bounded ν).

For the case of large ν, we consider an alternative smoother, Mk, that in addition to
(2.7), satisfies also estimate (2.8), namely,

(5.13) vT
k Mkvk ≤ β

(
bk+1 ‖vk‖2 + vT

k Akvk

)
.

Such smoother will be introduced and analyzed in the following section.
Using (5.13) for vf

k =
(
Qk − P k

k+1Qk+1

)
v, we obtain

‖
(
Qk − P k

k+1Qk+1

)
v‖2

Mk
≤ β

(
bk+1 ‖

(
Qk − P k

k+1Qk+1

)
v‖2 + ‖

(
Qk − P k

k+1Qk+1

)
v‖2

Ak

)
.
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Using the first line of estimate (5.11), together with (5.8) and (5.9), we have
(5.14)

b
1

2

k+1‖
(
Qk − P k

k+1Qk+1

)
v‖ ≤ b

1

2

k+1‖(IkQk − Ik+1Qk+1)v‖ + Cν

√
bk+1

bk
‖Qkv‖Ak

≤
(

σa + (1 + σaℓ) sup
ν

Cν

2ν+1

)
‖v‖A.

To bound the energy norm of (Qk − P k
k+1Qk+1)v = (Qk − SkI

k
k+1Qk+1)v we use (5.9).

Then,

‖(Qk − SkI
k
k+1Qk+1)v‖Ak

≤ ‖Qkv‖Ak
+ ‖SkI

k
k+1Qk+1v‖Ak

≤ ‖Qkv‖Ak
+ ‖Qk+1v‖Ak+1

≤ 2(1 + σaℓ)‖v‖A.(5.15)

Combining (5.14) and (5.15), (5.13) and using Proposition 3.4 yields the final desired
bound
(5.16)

‖
(
Qk − P k

k+1Qk+1

)
v‖2

Mk
≤ β

((
σa + (1 + σaℓ) sup

ν

Cν

2ν+1

)2

+ 4(1 + σaℓ)
2

)
‖v‖2

A

≤ β
[
(σa + 2(1 + σaℓ))

2 + 4(1 + σaℓ)
2
]
‖v‖2

A.

Final estimates. In conclusion, we are ready to complete the proof of the following
main result (given for ν = 1 and Richardson smoother in [SA]).

Theorem 5.1. Consider the s.p.d. matrix A as in (2.2) that is a finite element dis-
cretization of the model PDE (2.1). We define the SA AMG as described in Section 2
and Section 3.

We make the following assumptions:

• The approximation property (4.3) for the composite piecewise constant inter-
polants Ik (from coarse level k+1 all the way up to finest level 0) holds. This is the
case under assumption (4.4) that the kth level composite aggregates have diameter
that grows not faster than (2ν + 1)k+1h (where h is the finest level meshsize).

• The smoothed prolongation operators are defined as P k
k+1 = ϕν(Ak)I

k
k+1, where

Ik
k+1 is the scaled piecewise constant interpolant from coarse level k + 1 to the

next fine level k, and the prolongation smoothers, ϕν, are defined by (3.1), with
b = bk ≥ ‖Ak‖, and bk given by (5.2) with b0 being an explicitly available upper
bound of ‖A‖ (the original s.p.d. matrix).

• The multigrid smoother has error propagation operator, I −M−1
k Ak, where either

Mk ≃ bkI, with bk given by (5.2) or a more general smoother that satisfies (2.7).
• In the case of aggressive coarsening, i.e., for large values of ν, in addition to prop-

erty (2.7) we assume that the symmetrized smoother (defined in (2.9)) satisfies
estimate (2.8).

Then the resulting V (1, 1)–cycle MG preconditioner, B, is nearly spectrally equivalent to
A with K∗ ≤ C(ℓ3 + C0ν

2ℓ3), where K∗ is the constant in (2.10). The constant C0 is
positive for smoothers spectrally equivalent to Richardson. That is K∗ grows quadratically
with the coarsening factor (or equivalently quadratically with ν). In the case of smoother
with property (2.8) C0 = 0, i.e., the constant K∗ is bounded independently of ν 7→ ∞.
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Proof. The proof, in both cases (Richardson smoother or smoother with property (2.8))
exploits the already derived bounds of the sums (i) and (ii). In the case of smoother
spectrally equivalent to Richardson, we use estimates (5.12) and (5.10), whereas in the
second case (of smoother with property (2.8)) we use estimates (5.16) and (5.15).

For an illustration, we provide the details for the Richardson smoother. We use the
particular decomposition vf

k = (Qk − P k
k+1Qk+1)v and vk+1 = Qk+1v in the XZ-identity.

We first notice, that for the Richardson smoother Mk = bkI, we have

(vf
k)T Mkv

f
k ≤ b2

k (vf
k)T (2bkI − Ak)

−1 vf
k ≤ bk ‖vf

k‖2.

Similarly, we have

vT
k Ak(Mk + MT

k − Ak)
−1Akvk = vT

k Ak(2bk I − Ak)
−1Akvk

≤ 1
bk

‖Akvk‖2 ≤ vT
k Akvk,

which verifies property (2.7) (with α = 1).
Using this inequality in the upper bound (5.4), for the XZ-identity (5.3) and estimates

(5.12) and (5.10), we obtain

vT Bv ≤
[
‖Qℓv‖2

Aℓ
+ 2

∑
k<l

bk‖
(
Qk − P k

k+1Qk+1

)
v‖2 + 2

∑
k<l

‖Qk+1v‖2
Ak+1

]

≤ ‖Qℓv‖2
Aℓ

+ 2
∑
k≤ℓ

‖Qkv‖2
Ak

+ 2
∑
k<ℓ

bk‖
(
Qk − P k

k+1Qk+1

)
v‖2

≤ C

[
ℓ3 + (2ν + 1)2

∑
k<ℓ

k2

]
‖v‖2

A

≤ C (ℓ3 + (2ν + 1)2ℓ3) ‖v‖2
A,

where the constant, C, is independent of ν.
�

6. A polynomial smoother in the case of aggressive coarsening

In this section we introduce a special polynomial smoother Mk that satisfies the two
properties we used in the analysis; namely, the coercivity estimate (2.7) and assumption
(2.8).

The construction makes use of two properties of the polynomial ϕν , (or its normalized
form sν , (3.6)), as ν grows large, formulated earlier as Proposition 3.4 and Proposition
3.5. Their proofs are found in the Appendix.

We define the error propagation operator of both pre- and post- smoother of our
symmetric multigrid cycle as

(6.1) I − M−T
k Ak = I − M−1

k Ak =

(
I − 1

bk+1

AkS
2
k

)
Sk.

We note that this expression does not necessarily define an invertible matrix Mk, only
the product Xk = M−T

k Ak is well–defined and it gives rise to a positive semi–definite
matrix. Nevertheless the iteration method corresponding to (6.1) can be implemented as a
sequence of Jacobi sweeps. For this, we need to know the roots of the polynomials involved
to factor them as a product of first-order polynomials I − M−1

k Ak =
∏

j(I − τ−1
j b−1

k Ak).
To implement the smoother Mk applied to

Aku = f ,
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we can use the following standard composite algorithm. Given initial approximation u0,
for j ≥ 1, we compute uj from

τjbk(uj − uj−1) = f − Akuj−1.

The consecutive errors ej = u− uj satisfy the recurrence ej = (I − 1
τj

b−1
k Ak)ej−1, which

shows that the above composite iteration does lead to the iteration matrix I − M−1
k Ak.

Letting Sk = ϕν(Ak) = sν(b
−1
k Ak), i.e., using polynomial that is independent of the

scaling bk, recalling our choice of polynomial ϕν (defined in (3.1) for b = 1, or see
Proposition 3.5), we have

sν(t) = (−1)ν 1

2ν + 1

T2ν+1(
√

t)√
t

.

This leads to the following equivalent definition of Mk,

(6.2)

I − M−1
k Ak =

(
I − 1

bk+1
AkS

2
k

)
Sk =

(
I − (2ν+1)2

bk
AkS

2
k

)
Sk

=

(
I −

(
T2ν+1

(√
b−1
k Ak

))2
)

sν

(
b−1
k Ak

)
.

The following factored representation can be derived readily based on properties of
Chebyshev polynomials,

(I − T 2
2ν+1(

√
t))sν(t) =

∏

j: 0≤j≤2ν

(
1 − 1

cos2
(

j
2ν+1

Π
)t
)

∏

j: 1≤j≤ν

(
1 − 1

sin2
(

j
2ν+1

Π
)t
)

.

Then, we easily find the roots τj.
We recall the definition of symmetrized smoother and its relation to the pre- and post-

smoother:

(I − M−T
k Ak)(I − M−1

k Ak) = I − M
−1

k Ak, Mk = Mk(Mk + MT
k − Ak)

−1MT
k .

Since

I − M
−1

k Ak = (I − M−T
k Ak)(I − M−1

k Ak) =

(
I − 1

bk+1

AkS
2
k

)2

S2
k ,

we have

(6.3) M
−1

k = A−1
k

[
I −

(
I − 1

bk+1

AkS
2
k

)2

S2
k

]
.

It is clear that we can choose the number of smoothing steps to be proportional to
the degree of the prolongator smoother used and, in turn, to the coarsening ratio. In
practice, it may be convenient to choose this smoother to be tied to the prolongation
smoother. In general, however, it is possible to use a value of ν in the definition of this
smoother to differ from the value of ν we have used to define P k

k+1 = sν(b
−1
k Ak)I

k
k+1, as

long as these two numbers are comparable.
The following lemma verifies assumption (2.8) which was a key tool in proving conver-

gence rate independent of the coarsening ratio (or parameter ν). It also shows that the

direct definition of the symmetrized smoother (6.3) actually defines a s.p.d. matrix M
−1

k

in the subspace Null⊥ (Ak) spanned by the eigenvectors of Ak with positive corresponding
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eigenvalues. Based on Remark 5.1, we have that for the SA method we can assume that
Ak is s.p.d., then the polynomial smoothers Mk is s.p.d. and as consequence Mk is seen
to be invertible. For completeness, in what follows in the present section, we consider the
general case assuming that Ak may potentially have a non–empty nullspace Null (Ak),
that is, Ak being positive semi–definite (and symmetric).

Lemma 6.1. Let {vi} be eigenvectors of Ak and λi(Sk) corresponding eigenvalues of Sk.
We define

U1 = {span{vi} : |λi(Sk)| ≤ q} ,

U2 = {span{vi} : |λi(Sk)| > q} ,

where q ∈ (0, 1) is given parameter. Then, the right-hand side of (6.3) defines an in-
vertible matrix in the subspace Null⊥ (Ak) = span {vj : λj > 0}, which shows that Mk

is s.p.d. restricted to that subspace. Also, Mk can be extended on R
nk as semi–definite

matrix vanishing on Null (Ak). Finally, the following estimates are valid:

xT Mkx ≤ 1

1 − q2
xT Akx for x ∈ U1,(6.4)

xT Mkx ≤ bk+1

q2
‖x‖2 for x ∈ U2.(6.5)

In addition, for every x ∈ R
nk it holds that

(6.6) ‖x‖2
Mk

≤ 1

1 − q2
‖x‖2

Ak
+

bk+1

q2
‖x‖2.

Proof. Note that Ak, Sk and I − b−1
k+1AkS

2
k are all symmetric, mutually commute, have

common eigenvectors and U1 and U2 are their invariant subspaces. Lemma 5.1 gives
̺(S2

kAk) ≤ bk+1 and therefore I−b−1
k+1AkS

2
k is positive semi-definite and ̺(I−b−1

k+1AkS
2
k) ≤

1. Further, (3.3) gives ̺(Sk) ≤ 1.
For any given x ∈ Null⊥ (Ak), use its expansion in terms of the orthonormal basis of

eigenvectors {vj} of the symmetric matrix Ak

x =
∑

j

cjvj.

Then, denoting with sj the eigenvalues of Sk (equal to sν(b
−1
k λj)), using the fact that

M
−1

k is well–defined as the r.h.s. of (6.3) when restricted to Null⊥ (Ak), we have

xT M
−1

k x =
∑

j

λ−1
j

(
1 −

(
1 − 1

bk+1

λjs
2
j

)2

s2
j

)
c2
j .

Using formula (6.2), we then have

bk vT M
−1

k x =
∑

j

bk

λj


1 −

(
1 − T 2

2ν+1

(√
λj

bk

))2

s2
j


 c2

j .

We show next that the above expression is non-zero for any nonzero vector x. Denote
tj =

λj

bk
∈ [0, 1].
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We partition the above sum into two parts. The first sum corresponds to values
tj ∈ (0, 1

(2ν+1)2
]. For such tj, we have

t−1
j

(
1 −

(
1 − T 2

2ν+1(
√

tj)
)2 1

tj(2ν+1)2
T 2

2ν+1(
√

tj)
)

= 1
t2j (2ν+1)2

(
tj(2ν + 1)2 −

(
1 − T 2

2ν+1(
√

tj)
)2

T 2
2ν+1(

√
tj)
)

≥ 1
tj

(
tj(2ν + 1)2 −

(
1 − T 2

2ν+1(
√

tj)
)2

T 2
2ν+1(

√
tj)
)

≥ (2ν + 1)2 − t−1
j T 2

2ν+1(
√

tj) > 0.

In the last line we used the inequality |T2ν+1(x)| < (2ν +1)x for x =
√

tj. The inequality
is strict for ν ≥ 1 and 1 ≥ x > 0. Indeed, T3(x) = 4x3 − 3x satisfies −3x < T3(x) < 3x
for x ∈ (0, 1], that is, |T3(x)| < 3x. Assuming by induction that |T2ν−1(x)| < (2ν − 1)x,
we then have

|T2ν+1(x)| = |2xT2ν(x) − T2ν−1(x)| ≤ 2x + |T2ν−1(x)| < 2x + (2ν − 1)x = (2ν + 1)x,

which proves the result.
Now consider the second case, i.e., 1 ≥ tj > 1

(2ν+1)2
. We have

t−1
j

(
1 −

(
1 − T 2

2ν+1(
√

tj)
)2 1

tj(2ν+1)2
T 2

2ν+1(
√

tj)
)

≥ 1 −
(
1 − T 2

2ν+1(
√

tj)
)2 1

tj(2ν + 1)2
T 2

2ν+1(
√

tj)

≥ 1 −
(
1 − T 2

2ν+1(
√

tj)
)2

T 2
2ν+1(

√
tj)

≥ 1 − max
x∈[0,1]

x2(1 − x) =
23

27
.

This completes the proof that M
−1

k is a well-defined s.p.d. matrix on Null⊥ (Ak), for any
ν ≥ 1.

Next, we prove the second part of the lemma, namely estimates (6.4),(6.5) and (6.6).

Let x ∈ U1 and x ∈ Null⊥ (Ak). It is clear that A
1

2

k x also belongs to U1. We have

xT Mkx = xT Ak

[
I −

(
I − 1

bk+1

AkS
2
k

)2

S2
k

]−1

x

=
(
A

1

2

k x
)T
[
I −

(
I − 1

bk+1

AkS
2
k

)2

S2
k

]−1

A
1

2

k x

=
(
A

1

2

k x
)T
(

1 −
(

1 − T 2
2ν+1(

(
1√
bk

A
1

2

k

))2

S2
k

)−1

A
1

2

k x

≤
(
A

1

2

k x
)T (

1 − S2
k

)−1
A

1

2

k x

≤ (1 − q2)−1 xT Akx,

which proves (6.4).
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Let x ∈ U2 and x ∈ Null⊥ (Ak). Then, using similar arguments as above, using the

fact that M
−1

k is s.p.d. on Null⊥ (Ak), we have

xT M
−1

k x = xT A−1
k

[
I −

(
I − 1

bk+1

AkS
2
k

)2

S2
k

]
x

≥ xT A−1
k

(
I −

(
I − 1

bk+1

AkS
2
k

))
x

=
1

bk+1

‖Skx‖2

≥ q2

bk+1

‖x‖2.

Therefore,

xT M
−1

k x ≥ q2

bk+1

‖x‖2 for x ∈ U2,

and (6.5) follows since U2 is an invariant subspace of Mk as well.
To prove (6.6) for x ∈ Null⊥ (Ak), we write x ∈ R

nk as the ℓ2– and Mk–orthogonal
sum

x = x1 + x2, x1 ∈ U1, x2 ∈ U2.

Then using (6.4), (6.5) and the obvious fact that ‖x1‖Ak
≤ ‖x‖Ak

and ‖x2‖ ≤ ‖x‖, we
have

‖x‖2
Mk

= ‖x1 + x2‖2
Mk

= ‖x1‖2
Mk

+ ‖x2‖2
Mk

≤ 1

1 − q2
‖x1‖2

Ak
+

bk+1

q2
‖x2‖2

≤ 1

1 − q2
‖x‖2

Ak
+

bk+1

q2
‖x‖2,

completing the proof of (6.6).
A final observation is that if we extend Mk on R

nk as semi–definite matrix vanishing
on Null (Ak), then estimates (6.4), (6.5), and (6.6) still hold. �

Lemma 6.2. Let sν denote the function ϕν given by (3.1) with b = 1, i.e.

(6.7) sν(t) = (−1)ν 1

2ν + 1

T2ν+1(
√

t)√
t

,

where Tn is the Chebyshev polynomial of degree n. Consider the quantity (estimated in
Proposition 7.3 in the Appendix)

(6.8) C1,ν ≡ min
t∈[0,1]

[
1 − (2ν + 1)2s2

ν(t)t
]
sν(t) ≥ −1 + δ0 > −1 ∀ν,

where δ0 ∈ (0, 1] is a constant independent of ν. Then, it holds that

xT M−1
k Ak

(
2I − M−1

k Ak

)−1
x ≤ 2 − δ0

δ0

‖x‖2.
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Finally, we show that Mk can be extended on R
nk as semi–definite matrix that satisfies

the estimate

xT
(
Mk + MT

k − Ak

)
x = xT (2Mk − Ak)x ≥ δ0

2 − δ0

xT Akx.

Equivalently, we have

xT Ak

(
Mk + MT

k − Ak

)−1
Akx ≡ xT Ak(2I − M−1

k Ak)
−1M−1

k Akx ≤ 2 − δ0

δ0

xT Akx.

That is, estimate (2.7) holds with α = δ0
2−δ0

.

Proof. First we observe that the prolongator smoother Sk defined by Sk = ϕν(Ak) with
b = bk satisfies

Sk = sν(b
−1
k Ak).

Then for the error propagation operator (6.1) of our multigrid smoother, we have

I − M−1
k Ak =

(
I − 1

bk+1

AkS
2
k

)
Sk

=

(
I − (2ν + 1)2

bk

S2
kAk

)
Sk

=

[
I − (2ν + 1)2s2

ν

(
1

bk

Ak

)(
1

bk

Ak

)]
sν

(
1

bk

Ak

)
.

This shows that the product M−1
k Ak (which is well-defined without actually defining Mk)

is a symmetric matrix that satisfies

xT
(
I − M−1

k Ak

)
x ≥ min

t∈[0,1]

[
1 − (2ν + 1)2s2

ν(t)t
]
sν(t) ‖x‖2.

Thus, by assumption of the Lemma, we have xT (I − M−1
k Ak)x ≥ (−1 + δ0) ‖x‖2 with

δ0 ∈ (0, 1]. This implies that the symmetric matrix 2I − M−1
k Ak is coercive, i.e.,

xT
(
2I − M−1

k Ak

)
x ≥ δ0 ‖x‖2.

Hence 2I − M−1
k Ak is invertible. The expression of interest is

M−1
k Ak

(
2I − M−1

k Ak

)−1
= −I + 2

(
2I − M−1

k Ak

)−1
.

Since both matrices M−1
k Ak and

(
2I − M−1

k Ak

)−1
are symmetric, non-negative, and com-

mute, the product is also a non-negative matrix. We also have the estimate

(6.9) xT M−1
k Ak

(
2I − M−1

k Ak

)−1
x ≤

(
−1 +

2

δ0

)
‖x‖2 =

2 − δ0

δ0

‖x‖2,

proving the first desired result. Based on the definition of Mk as symmetric semi-definite
matrix with Null (Mk) = Null (Ak), we can define Mk on R

nk using the expression

Mk = Mk

(
2I − M−1

k Ak

)
,

which shows that Mk is invertible on Null⊥ (Ak) as a product of two invertible matri-
ces. It also shows that Mk is positive definite on Null⊥ (Ak) since the two terms (with
common set of eigenvectors) are positive definite (on Null⊥ (Ak)). The final result fol-
lows from (6.9), first for vectors in Null⊥ (Ak), using the fact that Mk is s.p.d. and the
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ν Cν/(2ν + 1) C1,ν ν Cν/(2ν + 1) C1,ν

1 0.444444444444 -0.135229953887 120 0.318318901912 -0.103057437637
2 0.344265186330 -0.113196279492 130 0.318317573036 -0.103056836776
3 0.330166016890 -0.108055102603 140 0.318316517698 -0.103056359520
4 0.325185126688 -0.106037861689 150 0.318315665665 -0.103055974286
5 0.322817680242 -0.105037539348 160 0.318314967883 -0.103055658768
6 0.321499599981 -0.104468396378 170 0.318314389245 -0.103055396432
7 0.320688247098 -0.104113591413 180 0.318313904096 -0.103055175377
8 0.320152568605 -0.103877442695 190 0.318313493321 -0.103054991898
9 0.319780050865 -0.103712323026 200 0.318313142470 -0.103054831135
10 0.319510389628 -0.103592331317 210 0.318312840427 -0.103054696141
20 0.318622268380 -0.103194362894 220 0.318312578538 -0.103054576126
30 0.318450784453 -0.103117025348 230 0.318312349991 -0.103054474895
40 0.318389749971 -0.103117025348 240 0.318312149354 -0.103054382088
50 0.318361238793 -0.103076576949 250 0.318311972264 -0.103054295161
60 0.318345660541 -0.103069535619 260 0.318311815174 -0.103054232702
70 0.318336229255 -0.103065272070 270 0.318311675174 -0.103054164217
80 0.318330089757 -0.103062496345 280 0.318311549901 -0.103054100291
90 0.318325870932 -0.103060588868 290 0.318311437328 -0.103054061698
100 0.318322847786 -0.103059221879 300 0.318311335785 -0.103054013059
110 0.318320607725 -0.103058208892 – – –

Table 1. Numerical evaluation of the constants Cν

2ν+1
and C1, ν

commutativity of all terms. Finally, for vectors in Null (Ak), the result is trivially seen
based on the definition of Mk. �

We summarize numerical evaluation of the constants C1, ν defined in (6.8), and Cν

2ν+1

defined in Proposition 3.3, in Table 1.

7. Numerical experiments and remarks on complexity and aggregation

strategies

Myriad algebraic aggregation schemes have been proposed in the literature (e.g., [SA4th,
SA]). For isotropic problems, these schemes typically result in a method with very low
storage and computational complexities, and the coarse-level operator fill-in typically
remains nicely bounded. However, proving that this is so is, in general, difficult. Indeed,
although overall well behaved, the aggregates obtained by these schemes may contain,
depending on the numbering of unknowns, aggregates that are not ideally aligned even
for uniform meshes.

We comment next on one way of constructing aggregates that leads to coarse matrices
with controlled sparsity pattern. Namely, assume we are given a quasi-uniform mesh Th

that triangulates our polygonal (or polyhedral) domain Ω. Choose a parameter H and
generate a uniform mesh TH with boxes of size H ×H (×H in 3D). Consider only those
boxes that provide covering of Ω. Each box Ωij(or Ωijk in 3D) intersects part of the mesh
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Th. In this way we construct aggregates Aij (or Aijk) each containing all fine–grid vertices
that are within a particular box (with some arbitration of nodes on box boundaries if
any). The only requirement is that the resulting aggregates have large enough interior
which can be ensured if H is large enough and Th is fine enough. Then, if we use one step
of SA with the thus constructed aggregates, the resulting coarse matrix AH will have, in
2D, the sparsity pattern of a 9-point stencil (27-point in 3D). The situation is illustrated
in Figures 1- 2. In general, this type of coarsening may result in fairly large coarsening
factor H/h. To compensate for it, we can use the polynomial smoother that we analyzed
in the preceding section.

From that level on, we are essentially working with a finite difference matrix on a
regular mesh with lexicographic numbering, so the complexity cost of the resulting SA
procedure is straightforward to handle; it is essentially the same as of a geometric multi-
grid on uniformly refined mesh.

Finally, we comment that this type of coarsening ensures uniform constant σa in our
main assumption (4.3) (or uniform Poincaré constant ca in (4.1)).

In what follows, we present several performance tests of the SA method based on the
aggregation procedure explained above. At the initial level, we use aggressive coarsen-
ing. Also, at that level, we use higher order polynomial degree, νP

0 , for the smoothed
prolongator, and νR

0 for the relaxation method. We use three meshes (Mesh6, Mesh7,
and Mesh8) obtained by successive steps of uniform refinement of the unstructured mesh
shown in Fig. 1. We also show a 3D example that corresponds to a deformed cubic
domain. The respective results are shown in Tables 2–4 for the 2D examples, and in
Table 5 for the 3D one. The last two columns of the tables show the relative condition
number of the SA method with respect to the given matrix and the operator complexity
(a standard AMG measure defined as the sum of the nonzero entries of the matrices at
all coarsening levels divided by the number of nonzero entries of the fine-grid matrix).

For efficiency reason, the polynomial used in the relaxation process at the initial
level was implemented in the following split form. Based on the fact that the relax-
ation iteration matrix has the product form I − M−1A = (I − M−1

1 A)(I − M−1
2 A) =

sν(b
−1A)

[
I − T 2

2ν+1

(√
b−1A

)]
(b ≥ ‖A‖), we used sν(t) in the pre–relaxation and 1 −

T 2
2ν+1(

√
t) in the post-relaxation process. This is only at the initial level. In general,

the method can be implemented (using proper restriction matrix R 6= P T ) such that the
overall V -cycle defines a s.p.d. SA. In our tests, the V-cycle leads to a nonsymmetric
operator, B−1, that is coercive and provides an accurate approximate inverse to A. We
ran the method as a preconditioner in a Krylov type method (which in the s.p.d. case
reduces to the conjugate gradient method). The condition number estimates that we
provide are simply approximations to 1/(1 − ̺) where ̺ is the convergence factor.

In all tables below we used the following stopping criterion:

(7.1)
zT rk

zT
0 r0

≤ ε
√

κ,

where rk denotes the residual at iteration k, rk = f − Axk, zk = B−1rk denotes the pre-
conditioned residual at iteration k, κ denotes the condition number of the preconditioned
system B−1A, and ε = 10−6. Some of the tables list two iteration counts. In such cases,
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Figure 1. Formation of aggregates to guarantee sparsity of all coarse-level operators.

the first number is the number of iterations performed to reach relative residual smaller
than ε, the second is the number of iterations to satisfy (7.1). The reported timings cor-
respond to the higher iteration count. All experiments were carried out on a notebook
personal computer with 2 GHz Intel Core2 Duo P7350 CPU and 4 GB of RAM.

All tables clearly demonstrate that the SA with aggressive coarsening performs as ex-
pected; it has bounded condition number and respective number of iterations when we
vary the size of the fine-grid problem. The setup and solution timings for SA with aggres-
sive coarsening are higher than SA with more gradual coarsening. The geometric way of
coarsening is overall less efficient (in terms of timings) than the well–tuned matrix-based
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Figure 2. The overlap of the extended aggregates obtained by applying
two actions of A illustrating the sparsity of the resulting SA coarse-level op-
erator. Darker color corresponds to elements that intersect fewer extended
aggregates.

1st coarse level # levels νP
0

νR
0

Setup time Iteration time Iterations Cond Oper. Cmplx.

64 3 12 12 0.463 0.823 8 2.467 1.00205

64 3 12 11 0.463 0.845 8/9 2.675 1.00205

64 3 12 10 0.463 0.777 9 2.958 1.00205

625 4 5 5 0.315 0.411 8 2.453 1.03174

625 4 5 4 0.312 0.376 9 2.513 1.03174
625 4 5 3 0.309 0.373 10/11 3.497 1.03174

625 4 4 4 0.266 0.373 9 2.608 1.02555

625 4 4 3 0.247 0.373 10/11 3.566 1.02555

5625 4 3 3 0.578 0.302 7 1.867 1.54096
5625 4 3 2 0.557 0.283 8 1.894 1.54096

5625 4 3 1 0.558 0.250 9 2.338 1.54096

5625 4 2 2 0.337 0.288 8/9 2.477 1.36543

5625 4 2 1 0.337 0.225 9 2.405 1.36543

5625 4 1 1 0.272 0.214 9/10 2.655 1.19211

90434 4 1 1 0.265 0.241 9 3.003 1.17419

90434 4 1 1 0.271 0.263 12/13 5.533 1.17419

Table 2. Results for 2D unstructured problem with 51, 681 degrees of freedom (Mesh6); Dirichlet
BC were imposed at 964 of its boundary nodes. The last 2 lines correspond to standard SA solver with

default aggregation and Gauss-Seidel and Jacobi relaxation, respectively, used on all levels. For k > 0,
values νk = 1 have been used.



26 MARIAN BREZINA, PETR VANĚK, AND PANAYOT S. VASSILEVSKI

1st coarse level # levels νP
0

νR
0

Setup time Iteration time Iterations Cond Oper. Cmplx.

289 3 12 12 2.220 4.645 8/9 2.693 1.00282

289 3 12 11 2.232 4.287 9 2.917 1.00282

289 3 12 10 2.218 4.331 9/10 3.337 1.00282

289 3 9 11 1.597 4.658 9/10 3.578 1.00199
289 3 9 10 1.591 4.631 10/11 3.834 1.00199

289 3 9 9 1.607 4.233 11 4.276 1.00199

289 3 9 8 1.594 4.174 11/12 4.972 1.00199

2500 4 6 6 1.757 2.353 8 2.530 1.03879

2500 4 6 5 1.754 2.313 8/9 2.625 1.03879

2500 4 6 4 1.759 1.919 8/9 2.554 1.03879

2500 4 6 3 1.732 1.902 10/11 3.643 1.03879

22500 5 3 3 2.386 1.922 8/9 2.682 1.55218
22500 5 3 2 2.345 1.557 9 2.713 1.55218

22500 5 3 1 2.347 1.228 9 2.545 1.55218

22500 5 2 2 1.457 1.643 10 3.457 1.37477

22500 5 2 1 1.453 1.249 10 3.174 1.37477

22500 5 1 1 1.220 1.100 10 2.906 1.19465

17271 5 1 1 1.020 1.310 9/10 3.692 1.10914
17271 5 1 1 1.022 1.243 13/14 5.741 1.10914

Table 3. Results for 2D unstructured problem with 205, 761 degrees of freedom (Mesh7); Dirichlet
BC were imposed at all 1, 924 boundary nodes. The last 2 lines correspond to standard SA solver with

default aggregation and Gauss-Seidel and Jacobi relaxation, respectively, used on all levels. For k > 0,
values νk = 1 have been used.

1st coarse level # levels νP
0

νR
0

Setup time Iteration time Iterations Cond Oper. Cmplx.

144 3 30 30 17.876 46.878 8/9 3.210 1.00028
144 3 30 25 17.669 42.745 9/10 4.059 1.00028

144 3 30 20 17.669 41.570 11/12 5.582 1.00028

1156 4 13 13 9.728 21.462 8/9 2.889 1.00324
1156 4 13 12 9.743 20.038 8/9 2.891 1.00324

1156 4 13 11 9.700 18.432 9 3.035 1.00324
1156 4 13 10 9.647 18.460 9/10 3.527 1.00324

10201 4 6 6 7.178 11.344 9 3.048 1.04092
10201 4 6 5 7.121 9.781 9 3.023 1.04092

10201 4 6 4 7.087 8.284 9 3.020 1.04092

10201 4 6 3 7.049 8.135 10/11 3.652 1.04092

10201 4 6 2 7.132 8.621 14/15 6.757 1.04092

10201 5 2 2 5.930 7.741 10/11 3.900 1.38440

10201 5 2 1 5.930 5.899 10/11 3.571 1.38440

10201 5 1 1 4.798 7.741 10 3.072 1.19946

90434 5 1 1 4.891 6.655 10/11 5.076 1.1787

90434 5 1 1 4.950 6.669 14/15 9.007 1.1787

Table 4. Results for 2D unstructured problem with 821, 121 degrees of freedom (Mesh8); Dirichlet
BC were imposed at 3, 844 of its boundary nodes. The last 2 lines correspond to standard SA solver
with default aggregation and Gauss-Seidel and Jacobi relaxation, respectively, used on all levels. For
k > 0, values νk = 1 have been used.

aggregation algorithms developed previously in earlier works, but still shows reasonably
competitive performance (for small polynomial degrees νR

0 and νP
0 ). Finally, we note that

the polynomial smoothers and the (scaled) Jacobi are the ones that are straightforward
to parallelize and hence of more practical interest. At the end, we comment that there is
some room to optimize the SA setup in the case of large polynomial degrees that needs
further study.
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1st coarse level # levels νP
0

νR
0

Setup time Iteration time Iterations Cond Oper. Cmplx.

64 3 8 8 30.174 30.799 7 2.118 1.00003

64 3 8 7 30.132 31.044 8 2.453 1.00003

64 3 8 6 30.059 30.131 9 3.045 1.00003

64 3 8 5 30.047 31.231 10/11 4.074 1.00003

64 3 6 6 23.425 29.974 9 3.192 1.00003

64 3 6 5 23.359 31.061 10/11 4.117 1.00003

1680 4 4 4 27.344 17.737 7 2.266 1.00159

1680 4 4 3 27.339 14.569 7 1.927 1.00159

1680 4 4 2 27.499 14.178 9 2.557 1.00159

1680 4 4 1 27.441 15.475 13/14 6.172 1.00159

1680 4 3 3 20.595 18.053 8/9 2.673 1.00111
1680 4 3 2 20.620 14.005 9 2.644 1.00111

1680 4 3 1 20.585 14.978 13/14 6.159 1.00111

46248 4 2 2 44.717 11.461 6 1.560 1.14223

46248 4 2 1 44.426 8.494 6 1.492 1.14223

46248 4 1 1 22.701 8.551 7 1.935 1.04375

51266 4 1 1 27.214 16.372 7 2.394 1.10982

51266 4 1 1 27.106 11.467 9/10 3.449 1.10982

Table 5. Results for 3D problem with 1, 367, 631 degrees of freedom; Dirichlet BC were imposed
only on one of the boundary faces. The last 2 lines correspond to standard SA solver with default
aggregation and Gauss-Seidel and Jacobi relaxation, respectively, used on all levels. For k > 0, values

νk = 1 have been used.

Appendix

Here, we study the behavior of the quantities Cν

2ν+1
and C1,ν defined in (3.5) and (6.8),

respectively, for large values of ν. For this reason, we consider the remainders Qk and
Pk of the Chebyshev polynomials (T0 = 1, T1(t) = t and Ti+1 = 2tTi − Ti−1, for i ≥ 1),
expanded as follows

(7.2)
T2k−1(t) = (−1)k−1(2k − 1)t + tQk−1(t

2), Q0 = 0,
T2k(t) = (−1)k + Pk(t

2), P0 = 0, P1(t
2) = 2t2.

Using induction (cf. Proposition 6.25 in [Va08]), the following recursive relations hold.

Proposition 7.1.

(7.3)
Qk(t

2) = (4t2 − 1)Qk−1(t
2) − 2Pk−1(t

2) + 4(2k − 1)(−1)k−1t2,
Pk(t

2) = −Pk−1(t
2) + 2(−1)k−1(2k − 1)t2 + 2t2Qk−1(t

2).

Proof. Indeed, assuming that (7.2) hold for some k ≥ 1. Then, using the formula T2k+1 =
2tT2k − T2k−1, we have

T2k+1 = 2t((−1)k+Pk(t
2))−(−1)k−1(2k−1)t−tQk−1(t

2) = (−1)k(2k+1)t+t
(
2Pk(t

2) − Qk−1(t
2)
)
.

Thus, Qk(t
2) = 2Pk(t

2) − Qk−1(t
2). Similarly, we have

T2k+2 = 2tT2k+1 − T2k

= 2t
(
(−1)k(2k + 1)t + tQk(t

2)
)
− (−1)k − Pk(t

2)
= (−1)k+1 +

(
(−1)k(2k + 1)2t2 + 2t2Qk(t

2) + Pk(t
2)
)
.

That is, we can set Pk+1(t
2) = −Pk(t

2) + (−1)k(2k + 1)2t2 + 2t2Qk(t
2). Finally from

Qk(t
2) = 2Pk(t

2)−Qk−1(t
2) = 2

(
−Pk−1(t

2) + (−1)k−1(2k − 1)2t2 + 2t2Qk−1(t
2)
)
−Qk−1(t

2),
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we obtain

Qk(t
2) = −2Pk−1(t

2) + (−1)k−1(2k − 1)4t2 + (4t2 − 1)Qk−1(t
2).

�

Our first main result is the following estimate.

Proposition 7.2. The quantity

Cν = sup
t∈(0, 1]

∣∣∣1 − (−1)ν T2ν+1(
√

t)

(2ν+1)
√

t

∣∣∣
√

t
= sup

t∈(0, 1]

|(−1)ν(2ν + 1)t − T2ν+1(t)|
(2ν + 1)t2

,

satisfies the bound
Cν

2ν + 1
≤ 2.

Proof. This is also the proof of Proposition 3.4.
We notice first that, if t is away from the origin, i.e., t(2ν + 1) ≥ 1, we have

(7.4) sup
t∈( 1

2ν+1
, 1]

|(−1)ν(2ν + 1)t − T2ν+1(t)|
t2(2ν + 1)2

≤ 1 + sup
t∈(0, 1]

|T2ν+1(t)| ≤ 2.

The quantity of interest, Cν

2ν+1
can be expressed in terms of the remainder Qν as follows

Cν

2ν + 1
= sup

t∈(0,1]

|(−1)ν(2ν + 1)t − T2ν+1(t)|
t2(2ν + 1)2

= sup
t∈(0,1]

|Qν(t
2)|

t(2ν + 1)2
.

We continue with the estimation of the last quantity. Our next goal is to show that for

(7.5)
|Qk(t

2)|
t(2k + 1)

≤ 2k for any k ≤ ν and t ∈ (0,
1

2ν + 1
].

This, together with (7.4), guarantees the desired uniform bound on Cν

2ν+1
.

We assume that ν ≥ 1. This implies that 1 − 4t2 > 0, i.e., 4t2 ≤ 4
(2ν+1)2

< 1.

Introduce the expression

Rk = 2Pk − (−1)k(2k + 1)4t2.

The recursion (7.3) for Pk can be rewritten in terms of Rk and Qk. We have

Rk = −Rk−1 + 4t2Qk−1 − (−1)k(2k + 1)4t2

= −Rk−1 + 4t2Qk−1 + (−1)k−1(2k − 1)4t2 + 8(−1)kt2

= −Rk−1 + 4
(
t2Qk−1 + (−1)k−1(2k − 1)t2

)
+ 8(−1)kt2

= −Rk−1 + 4tT2k−1 + 8(−1)kt2.

Therefore, the following estimate holds

|Rk|
t

≤ |Rk−1|
t

+ 4|T2k−1| + 8t ≤ |Rk−1|
t

+ 4t(2k − 1) + 8t ≤ |Rk−1|
t

+ 4,

and since R0 = 0, we obtain
|Rk| ≤ 4kt.

The desired estimate for Qk follows from the representation

Qk = −Rk + (4t2 − 1)Qk−1.
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We have

|Qk|
t(2k + 1)

≤ (1 − 4t2)(2k − 1)

2k + 1

|Qk−1|
t(2k − 1)

+
|Rk|

t(2k + 1)
≤ |Qk−1|

t(2k − 1)
+

4k

2k + 1
≤ |Qk−1|

t(2k − 1)
+2.

That is, since Q0 = 0, we obtain

|Qk|
t(2k + 1)

≤ 2k < 2ν + 1.

Combining the two estimates, (7.4) for t > 1
2ν+1

and (7.5) for t ≤ 1
2ν+1

, we obtain the
uniform bound

Cν

2ν + 1
≤ 2.

�

Numerical experiments presented in Table 1, show that for large ν the quantity behaves
asymptotically as Cν

2ν+1
≃ 0.318311...

Next, we study the quantity C1, ν defined in (6.8).
The polynomial smoother (6.1) leads to the polynomial

[
1 − (2ν + 1)2s2

ν(t)t
]
sν(t),

where

sν(t) = (−1)ν 1

2ν + 1

T2ν+1(
√

t)√
t

,

This shows that

1 − (2ν + 1)2s2
ν(t)t = 1 − T 2

2ν+1(
√

t).

Since both
√

t and t vary in [0, 1], we can substitute t for
√

t and in what follows we
estimate the expression

1 +
(
1 − T 2

2k+1(t)
)
(−1)k T2k+1(t)

t(2k + 1)
.

Our goal is to prove a positive lower bound δ0 ∈ (0, 1].
For t ∈ [ 1

2k+1
, 1], use the inequality

(7.6)

1 +
(
1 − T 2

2k+1(t)
)
(−1)k T2k+1(t)

t(2k+1)
≥ 1 −

(
1 − T 2

2k+1(t)
) |T2k+1(t)|

t(2k+1)

≥ 1 −
(
1 − T 2

2k+1(t)
)
|T2k+1(t)|

≥ 1 − max
x∈[0,1]

x(1 − x2)

= 1 − 2
3
√

3
> 0.

For t ∈ (0, 1
2k+1

] use the representation

(−1)k T2k+1(t)

t(2k + 1)
= 1 + (−1)k Qk(t

2)

2k + 1
.

Based on estimate (7.5), we then have for t ∈ (0, 1
2k+1

],

|Qk(t
2)|

2k + 1
≤ 2kt ≤ 2k

2k + 1
,
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which implies

(
1 − T 2

2k+1(t)
)
(−1)k T2k+1(t)

t(2k + 1)
=
(
1 − T 2

2k+1(t)
)(

1 + (−1)k Qk(t
2)

2k + 1

)
≥ 1 − T 2

2k+1(t)

2k + 1
≥ 0.

Therefore for t ∈ (0, 1
2k+1

], we have

(7.7) 1 +
(
1 − T 2

2k+1(t)
)
(−1)k T2k+1(t)

t(2k + 1)
≥ 1.

Combining estimates (7.6) and (7.7), we obtain the following result, which is a verification
of Proposition 3.5.

Proposition 7.3. The following coercivity estimate holds:

1 +
(
1 − T 2

2k+1(t)
)
(−1)k T2k+1(t)

t(2k + 1)
≥ δ0,

where δ0 = 1 − 2
3
√

3
∈ (0, 1).

By numerical experiments (see Table 1), a better lower bound of 0.89 for δ0 = min
ν≥1

(1+

C1, ν) can be obtained.
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